LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest.

نویسندگان

  • Siro Perez-Alcala
  • M Angela Nieto
  • Julio A Barbas
چکیده

Members of the Sox family of transcription factors are involved in a number of crucial developmental processes, including sex determination, neurogenesis and skeletal development. LSox5 is a member of the group D Sox factors that, in conjunction with Sox6 and Sox9, promotes chondrogenesis by activating the expression of cartilage-specific extracellular matrix molecules. We have cloned the chicken homologue of LSox5 and found that it is initially expressed in the premigratory and migratory neural crest after Slug and FoxD3. Subsequently, the expression of LSox5 is maintained in cephalic crest derivatives, and it appears to be required for the development of the glial lineage, the Schwann cells and satellite glia in cranial ganglia. Misexpression of LSox5 in the cephalic neural tube activated RhoB expression throughout the dorsoventral axis. Furthermore, the prolonged forced expression of LSox5 enlarged the dorsal territory in which the neural crest is generated, extended the 'temporal window' of neural crest segregation, and led to an overproduction of neural crest cells in cephalic regions. In addition to HNK-1, the additional neural crest cells expressed putative upstream markers (Slug, FoxD3) indicating that a regulatory feedback mechanism may operate during neural crest generation. Thus, our data show that in addition to the SoxE genes (Sox9 and Sox10) a SoxD gene (Sox5) also participates in neural crest development and that a cooperative interaction may operate during neural crest generation, as seen during the formation of cartilage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate.

The neural crest is a migratory cell population that gives rise to multiple cell types in the vertebrate embryo. The intrinsic determinants that segregate neural crest cells from multipotential dorsal progenitors within the neural tube are poorly defined. In this study, we show that the winged helix transcription factor Foxd3 is expressed in both premigratory and migratory neural crest cells. F...

متن کامل

A role for rhoB in the delamination of neural crest cells from the dorsal neural tube.

The differentiation of neural crest cells from progenitors located in the dorsal neural tube appears to involve three sequential steps: the specification of premigratory neural crest cell fate, the delamination of these cells from the neural epithelium and the migration of neural crest cells in the periphery. BMP signaling has been implicated in the specification of neural crest cell fate but t...

متن کامل

RhoB is expressed in migrating neural crest and endocardial cushions of the developing mouse embryo

RhoB mRNA expression was examined in the developing mouse embryo between E8.5 and E11.5. Specific expression was found in migrating neural crest (NC) cells, from the first stages of their migration at E9.5, throughout the migration period. Expression is maintained in NC derivatives for at least one embryonic day after they reach their final destinations, but is then down-regulated. RhoB is also...

متن کامل

Dynamic alterations in gene expression after Wnt-mediated induction of avian neural crest.

The Wnt signaling pathway is important in the formation of neural crest cells in many vertebrates, but the downstream targets of neural crest induction by Wnt are largely unknown. Here, we examined quantitative changes in gene expression regulated by Wnt-mediated neural crest induction using quantitative PCR (QPCR). Induction was recapitulated in vitro by adding soluble Wnt to intermediate neur...

متن کامل

Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube.

For neural crest cells to engage in migration, it is necessary that epithelial premigratory crest cells convert into mesenchyme. The mechanisms that trigger cell delamination from the dorsal neural tube remain poorly understood. We find that, in 15- to 40-somite-stage avian embryos, BMP4 mRNA is homogeneously distributed along the longitudinal extent of the dorsal neural tube, whereas its speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 18  شماره 

صفحات  -

تاریخ انتشار 2004